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Large-Deviation Principle for One-Dimensional
Vector Spin Models with Kac Potentials
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We consider the one-dimensional planar rotator and classical Heisenberg
models with a ferromagnetic Kac potential Jv(r) = yJ(yr), J with compact
support. Below the Lebowitz-Penrose critical temperature the limit (mean-field)
theory exhibits a phase transition with a continuum of equilibrium states,
indexed by the magnetization vectors m fs, s any unit vector and m/, the Curie-
Weiss spontaneous magnetization. We prove a large-deviation principle for the
associated Gibbs measures. Then we study the system in the limit j ' J .0 below
the above critical temperature. We prove that the norm of the empirical spin
average in blocks of order y-1 converges to mp, uniformly in intervals of order
y-p, for any p>1. We also give a lower bound to the scale on which the change
of phase occurs, by showing that the empirical spin average is approximately
constant on intervals having length of order y-1 ~x with A 6 (0, 1) small enough.
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1. INTRODUCTION

Mean field models are very important to explain in a simple way the
general phenomenon of phase transitions. However they have some
unphysical properties as the non convexity of the canonical free energy. In
the lattice gas language, this non convexity produces the totally unphysical
effect that in some region of the parameters the pressure is a decreasing
function of the density. Exactly the same problem appears in the famous
van der Waals equation of state that comes front a molecular theory of the
vapor-liquid transition. To avoid this unphysical feature of the van der
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Waals equation of state, Maxwell, in the middle of the last century, inven-
ted his equal area modification of this equation. In term of thermodynamic
potentials this corresponds to take the convex envelope of the mean field
canonical free energy. In the end of the fifties, M. Kac, G. Uhlenbeck,
& P. C. Hemmer,(24,25,26) found a microscopic model for the vapor-liquid
transition that explains in a very clear way the Maxwell modification of the
van der Waals theory. More precisely they derived the phase diagram of
the van der Waals theory, comprehensive of the Maxwell rule, from the
thermodynamics of a system with interaction yJ(yr), J(r) = exp[ — |r|], in
the limit y|0. These results were extended by J. Lebowitz & O. Penrose,(29)

to a larger class of potentials. There is a review by P. Hemmer &
J. Lebowitz,(22) appeared in the middle of the seventies, where more com-
plete references can be found.

As well known, mean field theories present some other unsatisfactory
features, e.g. phase transitions occur independently on the dimension in the
space. Then the behavior of a system with long but finite range (i.e., with
y small but positive) can be very different from the one of the corre-
sponding mean field model. Therefore it is natural to wonder what kind of
informations about the system, before the limit y j. 0 is taken, can be extracted
from the mean field theory. Strangely enough such a basic question has not
been investigated for a long time.

Only recently, after an important paper by M. Cassandro, E. Orlandi,
& E. Presutti,(12) a new interest for Kac models came. In ref. 12 the authors
give a very complete description of the infinite volume one dimensional
Ising-Kac model: they characterize the typical configurations of the
(unique) Gibbs state and the interface between two phases. Part of these
results were extended by T. Bodineau,(3) to a system of bounded con-
tinuous spins, but the canonical free energy of the corresponding mean
field model is still a double well one. Disordered one dimensional Kac
models were studied recently, in particular by A. Bovier, V. Gayrard, &
P. Picco(6,7) for the Kac-Hopfield model, and by T. Bodineau,(4) for a
disordered ferromagnetic Kac model. After that, the study of Ising-Kac
model in more than one dimension was done by various authors. The
existence of a phase transition for the system before the Kac limit was
proved by M. Cassandro & E. Presutti,(13) and A. Bovier & M. Zahradnik.(8)

Asymptotic from above of the critical temperature and decay of correlation
functions were given by M. Cassandro, R. Marra, & E. Presutti(11) The
surface tension was investigated by G. Alberti, G. Bellettini, M. Cassandro,
& E. Presutti,(1) and by O. Benois, T. Bodineau, P. Butta, & E. Presutti,(2)

while a characterization of the translation invariant states was done by
P. Butta, I. Merola, & E. Presutti.(10) The problem of considering the phase
diagram of a perturbation a la Kac of an Ising model was studied by
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T. Bodineau & E. Presutti.(5) Dynamical aspects of the Ising-Kac model can
be found in the papers by A. De Masi, E. Orlandi, E. Presutti, & L. Triolo,
see ref. 14 and references therein.

Beside the Ising model, vector spin models with an internal continuous
symmetry are also very important. They exhibit radically different
behaviors. A typical example is given by the classical SO(q) models, and,
among these, the classical XY or "planar rotator" model (q = 2), and
the classical Heisenberg model (q = 3). In one and two dimensions, if the
interaction range decays at infinity fast enough, there is no breaking of
the internal symmetry, this comes from the Mermin-Wegner argument
and was proved by R. Dobrushin & S. Shlosman,(15) C. Pfister,(31) and
J. Frohlich & C. Pfister.(17)

For the ferromagnetic planar rotator model with short range interac-
tions, the main feature is that there is uniqueness of the Gibbs state in one
and two dimensions, as shown by J. Bricmont, J. Fontaine, & J. Landau,(9)

and A. Messager, S. Miracle, & C. Pfister.(30) However in two dimensions,
at least for the nearest neighbor interaction, there is the famous Berezinskii-
Kosterlitz-Thouless transition(28) where there is no spontaneous magneti-
zation, no breakdown of the internal symmetry but the decay of two points
correlation functions is exponential at high temperature and only polyno-
mial at low temperature. The existence of this transition was proved
rigorously by J. Frohlich & T. Spencer.(20)

In three or more dimensions it was proved by J. Frohlich, B. Simon,
& T. Spencer,(19) that the ferromagnetic planar rotator and classical
Heisenberg models exhibit spontaneous magnetization and symmetry
breaking at sufficiently low temperature. A complete description of all
extremal, translation invariant equilibrium states was done by J. Frohlich
& C. Pfister,(18) where it was also proved that the surface tension vanishes.

From what discussed above it seems quite natural to start an analysis
of the Kac version of the classical XY or more generally classical SO(q)
models, as done for the Ising-Kac one. Moreover, a general picture on the
statistical mechanics of finite range SO(q) models is not well established as
for the Ising model.

For what concern the Kac limit of the thermodynamic potentials for
SO(q) models, C. Thompson & M. Silver(35) proved the Lebowitz-Penrose
theorem for the pressure. An analogous result for the canonical free energy
is missing. The proof of such a result is standard if one has good estimates
for the asymptotics of the corresponding independent (i.e. non interacting)
model. This is contained in our Theorem 2.2 (for q — 2, 3) that we did not
find in the literature and we believe interesting in its own.

The first step in the systematic study of Kac models is to consider the
one dimensional case, where we can expect to have a rather complete
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description of typical configurations. That is, to extend to models with an
SO(q)-symmetry the results of ref. 12. In this paper we consider the Kac
version of the ferromagnetic classical XY and Heisenberg models (q = 2, 3).
We prove a large deviation principle for the associated (infinite volume)
Gibbs states, by giving the explicit form of the large deviation rate func-
tional. By going beyond the large deviation behavior, we deduce also a
lower bound on the scale where the typical configurations are rigid.

2. NOTATION AND RESULTS

2.1. The Model

To each site i of Z is attached a spin variable ai taking values in Rq,
q = 2, 3. The a priori probability distribution v for the < i , ' s is assumed to be
the normalized surface measure on Sq-1, the unit sphere in Rq: v(da i) =
|Sq-1|-1 5(|a i| — 1) da i. We denote by a the spin configuration {<r i; ieZ}
and, for any region A of Z, aA is the restriction of a to A. Finally we call
y, yA the space of all the spin configurations on Z, A respectively.

The energy of the configuration a in a finite region A of Z and with
free boundary conditions is

where "•" denotes the Euclidean scalar product in Rq. JY(i), ieZ., ye(0, 1 ],
is a Kac potential: Jv(i) = y J ( y | i | ) with J(s), s>0, non negative and
continuous in [0, 1], strictly positive in (0, 1) and with support in [0, 1].
We assume also that J has bounded derivative in (0, 1) and that it is
normalized so that

The typical choice is J(s) = 1 [0,1], the characteristic function of [0, 1 ]. For
technical convenience, at some point in the paper, we will assume J of this
particular form.

The energy inclusive of the interaction with a boundary condition
oAc e yAc is given by
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The Gibbs measure at the inverse temperature ft > 0, in the finite region A
and with free boundary conditions is the probability distribution on SA

defined as

where ZA
 B,y is the partition function, i.e., the normalization factor that

makes the r.h.s. of (2.4) into a probability measure.
Analogously we define the Gibbs measure in A with boundary condi-

tion aAc as the probability

We denote by n^y the infinite volume Gibbs state, i.e., the (unique)
probability distribution on y that satisfies the DLR equations for the
specifications (2.5):

HpiV is a shift invariant measure on if and can be obtained as the weak
limit of the free boundary states:

where f i ^ y , A <=<=!., is the cylinder measure on £f defined by setting
/Z£ y ( f ) =^,y(r) if f is a cylinder in </ with basis re yA.

2.2. The Lebowitz-Penrose Limit and the Mean Field Theory

We introduce the empirical magnetization in the finite region A of Z
as

and, for any me Rq, |m| < 1, the canonical partition function
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Then the quantity

is well defined, it does not depend on the boundary condition aAc and it
has to be interpreted as the Gibbs free energy of the macroscopic system,
see, e.g., ref. 21.

The Lebowitz-Penrose theorem relates the limit free energy as y J, 0 to
the corresponding one predicted by the van der Waals (mean field) theory
of phase transition, comprehensive of the Maxwell rule. In our context:

Theorem 2.1. Let Fr((i, m) be as in (2.9). Then

where CE(f) denotes the convex envelope of the function f, while fB(m) is
the free energy of the corresponding "mean field" model, i.e.,

where I(m) denotes the entropy function of the a priori measure v.
The entropy function I(m) for our model can be computed as follows.

We introduce the moment generating function

and we define

By symmetry <i>(h) is a function of \h\ only and, by using polar coordinates,
one easily computes

where <# 0 ( . ) is the Bessel function of order 0.(360 Clearly also the entropy
function (2.13) depends only on the norm of its argument:
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We note that (j>(t), t eR , is a real smooth, even, strictly convex function
with

Moreover log 0(t), t eR , is a non negative, even, strictly convex function
with

Then

with h* =h*(m) = ( t* / |m | ) m, \m\ < 1 where t* = t* ( |m| ) is the (unique)
positive number for which

(clearly h* = 0 when m = 0). Finally, for any m e Sq-1 , I(m) is finite but the
supremum is not achieved in Rq.

The result stated in Theorem 2.1 does not depend on the lattice dimen-
sion (we have considered the case d= 1 to simplify notation) and it exhibits
a phase transition of mean field type. In fact there is a positive solution mf

of the equation

if

and any magnetization m on the sphere of radius mft minimizes the free
energy function fB(m). The inverse (mean field) critical temperature is thus
fi'f = q. A more detailed analysis of the mean field equation can be found in
Kesten & Schonmann,(27) where the mean field theory for the Heisenberg
model is obtained in the limit of infinite space dimensionality.

To our knowledge there is no proof of Theorem 2.1 in the literature.
Thompson et al.,(35) by working with the grand canonical partition
function, prove the analogous statement for the thermodynamic pressure
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pv(P, h], by showing that it converges to the Legendre transform of the
r.h.s. of (2.10). As already discussed in the Introduction, to prove the
"canonical" version (2.10) of the Lebowitz-Penrose theorem one needs
estimates on the asymptotics of the empirical average with respect to the
independent model. We did not find such a result in the literatures and also
we will need in the sequel more refined estimates. These are the content of
the following theorem that we will prove in Section 5.

Theorem 2.2. Let a={ai;i€^} be a sequence of i.i.d. random
variables with values in Rq, q = 2, 3, and probability distribution v (da i ) =
| S q - 1 | - 1 d ( | a t | - 1 ) d a i . Let VN be the probability distribution in Rq of
the empirical average mN(a) = N-1 £f=i <r i . Then, for any N>2, VN is
absolutely continuous with respect to the Lebesgue measure in Rq and its
density is identically 0 for |m| > 1. Moreover, when |m| < 1, the function

has the following property. For any re(0, 1) there is c ( r ) > 0 such that

Finally, there is a constant b>0 such that, for any re(0, 1),

With this result the proof of Theorem 2.1 is quite standard,(29) we omit
it to make shorter the paper.

2.3. Block Spins and the Continuum Approximation

The phase transition described above is due to a mean field effect and,
as already noticed, it occurs also in lattice dimension 1 and 2, when the
system has an unique infinite volume state at any y > 0. Here we consider
the one dimensional case and we analyze the typical behavior of the system
in the limit y [ 0. Since the relevant scale of the system is the interaction
range y-1 that diverges as yj.0, to see a non trivial structure we have to
look at the collective behavior of the system. This suggests that the
relevant quantities are appropriate empirical averages of spins. Moreover,
following,(12) it is convenient to scale distances by y and to work directly
on the continuum. With this in mind we introduce the following definitions.
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We denote by .m the space of all measurable functions m: R -» Rq such
that | m ( x ) | < 1 for any xe R.,M is equipped with the weak L2-loc topology
with respect to which it is compact and convex. For any 6 > 0 we denote
by °J>(&) the partition of (R into intervals [nd, (n+ 1 ) S ) , nel. The "coarse
graining transformation" mi—»/«('5) o f ,M into itself is defined by setting

For each y > 0 we define the continuous injective map a H-» ay of!/' into ,M
by setting

Clearly ay is a @(y)-measurable function and we call "block spin trans-
formation" of size 8 > y the map a t-» a(^ of V into m. In the sequel, to
simplify notations, we assume that the Kac parameter y and any coarse
graining parameter 6 we introduce belong to the set {2-n; n e N}.

With an abuse of notation, we denote by the same symbol n^y the
image of the Gibbs measure /.ip y on ,// via the map (2.23). That is, for any
measurable set A in ,//, we shorthand fipiy(A) = [tf y ( {e rey y : ayeA}).

2.4. Results

We will restrict ourself to the case ft > [S^ since this is the more
interesting one. When ft ^ ^ the picture is quite trivial, since one can
prove that for any 6>0 the marginal of/^y on the block spins a(^ gives
full measure to the profile m(S) = 0 as y \ 0.

Our first result describes the effect of the Lebowitz-Penrose phase
transition in the structure of /i^ y for y ]. 0. Given m e Rq, \m\<10, we denote
by v^ the product measure on ff such that, for any ;e/, v^(da,) =
< j > ( h * ) - 1 exp[h* - C T i ] v(doi) where /!*eRq is chosen such that vm(cri) = m
(see also Section 5, formula (5.5)). Then

Theorem 2.3. Let fl>$*f = q and mp as in (2.18). Then, for any
S>0, £e(0, mf) and p>0,

Moreover
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Theorem 2.3 shows that the block spins a ( S ) are close to the mean field
spontaneous magnetizations {m^s\ s e S Q - 1 } .

In fact we can prove a stronger result where we allow the parameters
S = 6 ( y ) l 0 , C = C(?)|0, as y JO and get a localization in the sphere of
radius mft for a length which is exponential in a power of y-1.

Theorem 2.4. Let (]>[if = q and mp as in (2.18). Then there
exists an absolute constants c '>0 such that if 6"=<)"(y) and C" = C"(> ))
satisfy <r(n)3>3c7a with 0 < < x < (2(6+ q ) ) - 1 < 1 then, for a l le>0,

The next question concerns the distribution of the er^'s on the sphere
of radius m^, i.e., the change of phase along the lattice Z. We prove that
on a macroscopic scale which is diverging when y J, 0, typically the profiles
are rigid. This gives a lower bound on the rigidity length.

Theorem 2.5. Let P>Pf* = q and mp as in (2.18). For any given
0 < p< 1 and & > 0, let

then for any 1 > 0 small enough, for any L < y -A, we have

Remarks. It follows from the proof of Theorem 2.5 that the
parameter A has to be smaller than (6(6 + q ) ) - 1 . A priori, we can expect
that the rigidity length, which can be defined as the largest L such that
(2.28) is true, is an inverse power of y and has to be a decreasing function
of q since there are more possibilities to be non rigid when q increases. Our
bound has this property but we do not believe that it is optimal. Moreover,
on the heuristic level, that is looking at the large deviation functional
defined in Theorem 2.6 below and ignoring the error terms, for the plane
rotator model, q = 2, the cost to make a spin wave on a circle of radius mft,
that is rotating smoothly the angle, say from 0 to L, is of order (AO)2 ( y L } - 1

where A6 = QL — 00. Therefore we can expect that the profiles are rigid on
a macroscopic length L = o ( y - 1 ) and start making spin waves on a length
L = O ( y - 1 ) . Analogously, in both cases q = 2 and q= 3, we can expect a
finite deviation of the modulus of the block spins from the mean field value
nip on a length which is exponential in y-1 (notice that the proof of
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Theorem 2.3, Section 4, actually implies that the modulus of the block
spins remains close to mp on a length e*7-1 if c is small enough).

The key ingredient to prove the above theorems is a large deviation
principle for the Gibbs measures {/z^; }>>0} which is the main result of
our paper. To state this we need some definitions.

We introduce the "excess free energy functional" .&:.//-»[0, x] as

where

and ff,(m) is defined in (2.11). In (2.30) and in the rest of the paper we
shorthand fp(mfs) = f ^ ( m e ) for any ie Sq-1 (recall that fp(m) depends
only on |m|). We introduce the subset of .W

Then

Theorem 2.6. The functional & is lower semicontinuous on ,//
and bounded on .df°. Moreover, the family {npty\ }'>0} satisfies the large
deviation principle with rate function /?. '̂. That is, for any closed set Fc: ,41
and any open set A a ,.m,

3. LARGE DEVIATION PRINCIPLE

This section is devoted to the proof of Theorem 2.6. Since we work in
the infinite volume, if we merely perform the continuum approximation
everywhere, we cannot control the errors. Then, as in ref. 12, we "localize
the transition to the continuum" by using the strategy proposed by Ruelle
to study superstable interactions.(32,33) we have here new difficulties with
respect to Ref. 12, coming from the vector valued nature of the single spin
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state space. A key ingredient is Theorem 2.2 which allows us to control
the entropy contribution coming from the block spin transformation.
Moreover, because of the continuous symmetry of the system, we need
some extra work when proving the lower semicontinuity property of the
free energy functional 3*. Also a more attention is required when computing
the cost in 3F of "non equilibrium" configurations.

The section is divided into four subsections. In the first one we prove
a preliminary lemma on the block spin approximation. The second one
is devoted to the proof of the required properties of the free energy func-
tional &. Finally, in the third and fourth subsections we prove the upper
and the lower bounds (2.32) and (2.33).

3.1. Block Spin Approximation

We start with some definitions. Let T= [ t 1 , t2] be a finite interval of
R. For any mtJ( we denote by mT its restriction on T. A cylinder set in
Jt with basis in T is any subset F of Jt with the following property: for
any meF and me.J{, mT(x) = mT(x) almost surely (in T), implies meF.
Therefore the set {a:ayeF} is a cylinder in ff with basis in AT =
{ ieZ: [y"1^] </< [y - 1 t2 ]} - For any finite subset A of Z containing AT

and any spin configuration o> e yA, we define

where we shorthand with \r the characteristic function of the set
{aey: (ay)T = m a.s. for some meF}. We introduce the continuum
version of the Hamiltonian (2.3),

Recalling the definition (2.11) and using the normalization assumption
(2.2) one easily checks that
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where

and

Notice that, since J is supported on [0,1], W T ( . | m T c ) and UTc(mTc)
depend only on m(y) for ye Tc such that dist( y, T) < 1.

(i) There are constants b 1 , b 2 > 0 such that for any y, 6* e
{ 2 ~ " ; n e N } , y <d*, any measurable cylinder set F with basis T and any
boundary condition CTJC e.^,,

(ii) For any m&Jt such that ||mT||x<\, p e ( 0 , 1 - ||mT||x),
d * e { 2 - n ; n e N } define

Then, for any ye { 2 - n ; n e N } , y<S*, and any boundary condition
d^e^c,
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where b1 is the same constant as in (3.7) while c ( . ) is the function that
appears in (2.20).

Proof. For any 6* e {2 - n ; ne N} we introduce the set N =
{n e Z : t1 < d*n < t 2 } . By exploiting the smoothness properties of the inter-
action J one easily gets, for any ffe(Sq-1)z,

and, for y<5*,

where b'1 and b"1 are suitable positive numbers depending only on J. Calling
b1=b'1+b"1 and observing that |A| = y-1 |T| we get, for any measurable
set F in m,
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where

If P is ^"'-measurable, the integrand in the r.h.s. of (3.13) depends only
on the block spins a(**\nd*), ne^V'. Then we cant integrate first on the
spin configurations in each block /)„ = {i e A : nd* < iy < (n + 1) 6*} for
fixed value of a(f>(nd*) = |An|

-1 X^ff,. We obtain so

where vs.v-\, as in Theorem 2.2, is the law of the empirical average of
6*y-1 i.i.d. variables with distribution v, £ls'h T-> Rq is defined by setting
£, ( S * ) (x) = £,n if xe [n6*, (n+ 1) S*). Now we prove separately (3.7) and
(3.9).

(i) By (3.12) we need an upper bound for Z^(F). We can assume
that F is ^"'-measurable. In fact, if this is not the case, we get an upper
bound by replacing F with the bigger ,@(<5*)-measurable set

and the r.h.s. of (3.7) does not change.
Since the integration in (3.14) is over all the possible values of £ =

{^n;ne^V}, we insert a partition to apply separately (2.19), (2.20) and the
estimate (2.21). Let re(0, 1) be a parameter to be fixed later. We expand

where the sum is over all the subsets of Jf,

and
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By (2.19)

by (2.20), for any $eB$,

on the other hand, /(|M|), see (2.15), is an increasing and continuous func-
tion for |m|e[0, 1], so that, since vs*r-1 is supported on the unit closed
ball in Rq,

From (3.18), (3.19) and (3.20) we get

and then

We notice that, for q = 2, 3 and any re(0, 1), J<#[, 1^ [<r^4n, while by
(2.21), va.},-1(K1|>r)<exp[-|log(Al1r))|<J*y-1/12].1We fix then r so
close to 1 that /(1)< |log(6(1-r))|/12. Observing that \ ^ \=(d* ) - 1 \T\
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and recalling (3.3) we obtain (3.7) with b2 = c(r) from (3.12), (3.15) and
(3.21).

(ii) By (3.12) we need a lower bound for Z N ( F ) with F=
Vd. p , T (m) . Since V s * p , T(m) is ^''-measurable, Z ^ ( V s * P , T ( m ) ) can be
written as in (3.14) with, see (3.8),

But from the hypothesis on m and p, if ^ e y s . P , T ( m ) then |£n|<
||mT|| <o + P < 1 For any neV, so that we can apply (2.19) and (2.20)
getting

and then

By noticing that, for q = 2, 3, J d£{ ^ ^ ^ p ^ ^ p 2 / 3 and recalling (3.3), we
get (3.9) from (3.12) and (3.23). |

3.2. Analysis of the Free Energy Functional

In this subsection we prove the properties of the free energy functional
stated in Theorem 2.6. Let &, U be as in (2.29), (2.30) respectively and
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define, for any set Q <= R and any measurable function f: Q ->Rq,
q=1,2,3,

where | • | denotes the Euclidean norm in Rq Also we shorthand
||f||R = ||f||. Then

Lemma 3.2. There is c>0 depending only on ft and J so that the
following holds.

(1) For any m e m such that ,F(m)< +00 there is a measurable
map U 3 x \ - > s ( x ) e S q - 1 such that

(2) For any m eJf and any measurable map R a xi-*s(x) e Sq-1

Proof. Since fB(m) —f B (m p ) , as a function of |m|, has an absolute
quadratic minima at \m =mp, there is c1 >0 such that, for any m e ^ t f ,

Then

and let x i - + s ( x ) e S q - 1 be any measurable map such that s(x) =
|m(x) | - 1 m(x) for any xeXc. By (3.27) ||(|m| -mp)||2< c 1 ( m ) < +00 so
that X has finite Lebesgue measure. Moreover, from the definition of X,

On the other hand, from the definition of s(x),
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so that

Finally, recalling (2.2) and using the convexity of |.|2,

From (3.29) and (3.30) the bound (3.25) for a suitable c>0 follows.

(2) Let m, sz,M, | s ( x ) | = \ for any xeU. By (3.27) and arguing
analogously as to get (3.30), we have

Observing that ||(|m| -m p ) | |< s£ ||m-m f ts||, (3.26) follows from (3.31). |

Clearly Lemma 3.2 implies that &(m) is finite iff me m°, see defini-
tion (2.31). We are left with the proof of the lower semicontinuity of F.
We have to show that, if {mn} is a sequence in ,M converging in the weak
L2-loc topology to some me.M, then

clearly if limn_ +00 &(mn) = + oo (3.32) holds, so we can assume

Then there is a subsequence {m'n} such that & ( m ' n ) < x . + 1 for any neN.
By item (1) of Lemma 3.2, there is a sequence {sn} of measurable maps
x | - ^ s n ( x ) e S q - 1 such that

Since the bounded sets in L2(R; Rq) are compact in the weak topology, we
can extract a subsequence {m"n — m f l s ' n } converging in the weak L2 topology
to some element f L2(R; Rq). Since mn -> m weakly in L2-loc, we conclude
that the subsequence {.s'n} converges in the weak L2-loc topology to m =
m p

- 1 ( m — f ) € m . We point out that in general m ( x ) $ S q - 1 although
s n ( x ) e S q - 1 for any neN. But using the bound (3.34) for U(sn) we will
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prove that there is x ^ s ( x ) e S q - 1 such that m-seL 2 (R; Rq-1). We
introduce the functional on J(:

where Ne M and "*" denotes the convolution. By the assumptions on the
interaction J, for any compact set K of R, the map ij: L2(K; Rq) ->
C(K; R q ) : i j(m) = J*m is compact. Then UN is lower semicontinuous
(notice that | • |2 is a convex function) while U(1)

N is positive and continuous.
Moreover, for any x^>s(x)eS q - 1 U(1)

N(s) = U N ( s ) < U ( s ) , so that, from
(3.34), since s'n ->M,

Observing that | J * m ( x ) | < 1 for any jceIR, from (3.37) we get, for any
NeN,

so that 1 — |m| eL2(R). Moreover, by the monotone convergence theorem,

and, by (2.2), since | m ( x ) | <1,

so that U(m) < 1 +c(a+ 1) < +00. Arguing analogously to the proof of
item (1) of Lemma 3.2, there is x ^ x ( x ) e S q - 1 such that m - s e L2( R; Rq)
and U(s)<+co. Recalling that m — m^in = f e L2(R; Rq), we get also
m - m/ls e L2(R; Rq), and then F(m)< +00.
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Now the proof goes on very similar to the analogous one in ref. 12,
but we report it for the sake of completeness. For any finite interval T
of R, we decompose

where

(see (3.2), (3.4) for notation). Since I ( • ) is a convex function and E(.| .) is
continuous, the functional 4 is lower semicontinuous.

Let £>0. Since | |m"n-mps 'n | |2<c(a+1) for any neN (see (3.34)),
there are a subsequence {nk; ke N} and an interval TE such that

Since ||m — m f t x| | 2 < +00 and .&(m)< +00 there is also fe such that

Let T=Te(jTe; from (3.38) for &(m"n k) and the lower semicontinuity of
&°T(m), recalling (3.33), we get

Using (3.38) and the second inequality in (3.41), from (3.42) we have

But, by (2.2) and convexity,
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and analogously

Collecting together (3.43), (3.44), (3.45), using (3.40) and the first
inequality in (3.41) we finally get a^.^f(m)— e and then by the arbitrarily
of e, a^J^fm). That is J* is lower semicontinuous.

3.3. Upper Bound

Following ref. 12 we prove a crucial estimate for the probability of
cylinder sets in M with basis a finite interval Proposition 3.3 below, from
which the upper bound follows by using the properties of &. The basic
idea is to perform the block spin transformation in the (random) interval
T containing the origin and defined by the condition: the right and the left
unit intervals adjacent to T are the first ones where the spin configuration
is at "local equilibrium", in a suitable sense to be precised. Then the system
in T looks finite and, on the other hand, we can prove that the probability
of having local equilibrium not far away from the origin is large enough.

First of all we give a precise notion of local equilibrium. It is reasonable
to consider a spin configuration at equilibrium in a given (macroscopic)
interval / and with some accuracy £ > 0 if all the block spins on / are in
a C-neighbor of an equilibrium magnetization. With respect to the case of
Ising systems we have here a continuum of possible equilibrium magnetiza-
tions, indexed by the vectors m^s, s e S q - 1 . Therefore it is necessary to dis-
cretize the number of possible magnetizations. But we cannot introduce
simply a partition of Sq-1 and define the local equilibrium accordingly. In
fact, due again to the continuum of the equilibrium states, the energy cost
of some non equilibrium configurations can be very small, independently
on the accuracy £. Then the probability of finding local equilibrium is not
large and the strategy of the proof cannot be applied. To overcome this
problem we introduce a weaker definition of equilibrium, obtained by
introducing a finer discretization of Sq-1, so that the C-neighbors of two
close magnetizations are overlapping.

For any £>0 we choose / * e N and S 1 , . . . , S f » e S q - 1 such that, for
any s e S q - 1 there is sf with |s — s f | < ( 1 + m 0 ) - 1 £ / 4 (the precise value
(1 + mp)-1/4 comes out for technical reasons, see the proof of Lemma 3.4
below). Notice that we can assume l*~C 1 - q . Given S, £>0 we say that
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in an interval [k, k+ 1) e^(1) there is equilibrium with accuracy £ and
coarse grain 6 if, for any xe [k, k + 1 ) , | a^ (x ) — m fs f| <C for some s,. To
summarize this we introduce the variable tj f _c ( - , • ) : Z x ,//^-» {0, I , . . . , l *}
defined as follows. Consider the random subsets of {1,..., /"*},

Then

so that rjs c(k, o^) =0 means that there is equilibrium in [k, k+ 1) in the
sense stated above. When useful we will consider ^ i C ( . , . ) a function on
1 x ff by setting, with an abuse of notation, t]it/:(k, a) = r;g ((k, av).

For any pair of unit vectors s, s'Sq-1 we define the function

and, for any finite interval Ic R we introduce the subset of, M,

where we shorthand xv Sf =%f ( . We also write ,///r for ,//[_r r], rcR.
Then: + '"

Proposition 3.3. For any interval I = [ — a, a] with a e N , any
cylinder set F with basis I, any £>0, any ^", S* E {2-n; neN} and any
integer R > a,

where c1, c2 and S(£, ^, R) are positive and independent on I and F, and
9(£, <5, R) -> 0 as R -> + oo for any C and 6.
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Proof. Fix C, S>Q and R>a. Let T±: ,jf-> ^ u {+00} be the
functions

( T ± ( W ) = + O O if the infimum is not achieved. For any k + , k _ > a and
l+, l_ = 1,..., l* we introduce the set

and we partition M as the union of

and its complementary set Dc. Recalling (2.7) we introduce the set A =
{ieZ : |i| <.L}, L an integer greater than y-1R that will go to +00, and
we look for an upper bound of Z A

i Y ( F ) , defined as in (3.1) with free bound-
ary conditions. We estimate

and we bound first Z % y ( F n G ( f f l ± ) and then Z^y(D
c).

Fix k±,f± and decompose A=A+ u / / u / l _ with

Then

We notice that a e G ( f f i ± implies \tf'\x)-x/+f_(x)\ ^C for any xe
[-k_1, -K_)u[K+ ,K+ + 1). Then, calling T = [ - k _ , k + ] , for some
b3 > 0 depending only on J and for any m e M,
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Now we apply Lemma 3.1 to bound Z^°#(F). From (3.7) and (3.57) we
obtain:

We are left with the bound on the product of the partition functions
in (3.56) coming from the integration over the spin configurations aA and
aA_. As in ref. 12 we follow Ruelle's strategy,(32,33) and we reconstruct the
full partition function on A. First of all we use the symmetry of the inter-
action with respect to global spin rotations to claim that

Let now V s * p , T ( m p S e ) be as in (3.8). From the explicit form of the func-
tional, see also the proof of Lemma 3.4, one easily checks that, for some
constant b4 > 0,

We choose p so small that b4 p
2 < b 1 6 * . Then from (3.9), (3.57) and (3.60),

for any a such that t]Si((— k_ 1, a) = ijs,^(k + , er) = /+, we get

Now we come back to the r.h.s. of (3.56). We first use (3.59) and then
(3.61) to reinsert the integration over the er^'s in order to reconstruct
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Z p > y ( r i s t / . ( - k _ l , - ) = riajf(k + ,-) = S+) that can be bounded with the full
partition function. From (3.58), recalling the definitions (3.4), (3.5), (3.6),
(3.49) and that |T|<2R, we finally obtain

To bound Z^Y(DC) we need a lower bound for the cost in free energy
of a run of non equilibrium configurations which is the content of the
following lemma.

Lemma 3.4. Let T= [t1 ,t2], t1 , t2 eZ. For any Se { 2 - n ; ne N},
Ce(0, nip), let ris^(-, •) be as in (3.47) and define the cylinder set

Then there are positive functions p(d, C) and p*(6, f) such that, for any
S * e { 2 - n ; n e N } , <5* <p*((?, £),

where FT is defined in (3.4).
We postpone the proof of the above lemma at the end of the subsec-

tion and we complete the proof of Proposition 3.3. As before we take T =
[ — k_, k +] with now k± =min{R; T ± }. Since there is not equilibrium at
the border of T, an estimate as (3.57) is not still true. We then use that the
interactions WT and UTc can be uniformly bounded by some constant
C > 0 and we simply estimate
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But, from the definition (3.53), min{K_; k+ } = R, therefore Dc is con-
tained into a set r(<i'C) as defined in (3.63) with t 2 - t 1 > ( R - a ) . From
(3.54), (3.62), (3.65) and using Lemma 3.4 we finally get, uniformly in A,

from which the Proposition follows immediately. |

With Proposition 3.3 and the lower semicontinuity of the functional J%
the proof of (2.32) is exactly the same as in ref. 12, then we omit the proof.

Proof of Lemma 3.4. Let

From the definition (3.47),

where, for any Se {2 - n ; ne N}, Ce(0.w^), n ez, l= 1,..., l*,

Now let 6* e { 2 - n ; n e N}, d* < S, and define, for any n e N,

Given meM, let B n . l ( m ) = { u e u n : | m { ' ' > ( u d * ) - m l l s f \ > V 2 } . Clearly,
for any we/"<*/>,
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so that |B n , l (m)| >(S/(46*). Then

Let C' = (1 +mp) - 1 C/2 and £" = w/'/8. For any we^ define

By triangular inequality and since £e(0, mB) We have

Then, setting

from (3.67) and (3.71) we obtain

Let now m eD(S'-(k). Then there are n1 e Nk and C/£ ^n1, |U| >£S/(4S*),
such that

In particular the unit vectors m(d'\ud*)/\m(S*\u5*)\ /O are well defined
for any ueU. But from the definition of {sf; L = 1,..., l*}, for any s e S q - 1 ,
there is sl such that |s — sl| < £'/2. Then we can apply the "pigeon holes
principle" to conclude that there must be at least an index l1 and a set
U1,= U such that | U1| > C M4^* <$*) and
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Since meD(**'c\k) it follows also that there are n2eJ/~k and U 2 ^ a U n 2 ,
| U 2 | > C < V ( 4 < 5 * ) such that

From (3.74) and (3.75), for any u1 e U1 and u2 e U2,

Since meB ( * ' ' c ) u) for any ue U1 u U2, see (3.74) and (3.75), from (3.76)
and recalling that f" — w^C'/S, we get

So we found

where

From (3.72) and (3.77) we finally obtain

Now it is easy to get a lower bound for ^T(m(^f)) on the set in the r.h.s;
of (3.79) (and so also in r(<«>. Recalling (3.4),

where
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and

Using the fact that mp is a quadratic absolute minima of fB and assuming
J = 1 [0,1], for a suitable positive constants c'.

(for the second one we used also that l*~( -q+1). In the general case,
since J>0 in (0,1), the term c'<J2fq + 3 is replaced by some function
g J ( S , C) which is strictly positive for S, ( > 0. The lemma follows
immediately. |

3. Lower Bound

As in ref. 12 we introduce the basis of neighborhoods { F,, f K;S>0,
C>0, ReN}, meJt, for the weak L2-loc topology where Vgf^R(m) is
defined as in (3.8) when T= [ — R , R ] and (6*, p) = (<5, £). First we prove
a probability estimate, Proposition 3.5 below, for neighborhoods of m e Ji
such that || m || oo < 1. Next, by exploiting the properties of the free energy
functional F and of the set J(°, see (2.31), we deduce (2.33).

Proposition 3.5. Let meJt, | |m||00<l. Suppose there are ReN
and two unit vectors s+, s_ eSq-1 so that m(x) —xs+, s (x) = 0 if |x| > R,
see definition (3.48). Then, for any e>0 there are C>0 and 5e
{ 2 - n ; n e M } such that

Proof. As in the proof of Proposition 3.3, we use (2.7) and we work
in finite volume. Let Le N larger than y-1

R and A = {ieZ : |i| < L } . For
any k e Z we define the events
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and we introduce the sets d, A± as in (3.55) with here k± = R. Then we
bound

Now we can apply item (i i) of Lemma 3.1 to Z^'°f(VSi^R(m)) with
T= [ —R, R] and (8*, p) = (8, c). Using the smoothness properties of the
functions J( •) and I ( • ) and since aA, e G( S , C ) , for some constant b5 > 0.

(we used that m(^},=mTc = (xs + S_)TC)- We need to replace the coarse grain
m(^ with mT. This can be done in the energy terms E( • | •) and WT( • | •)
with an error of order 8. Conversely, we have not such an estimate for the
(local) entropy term in JY because the difference m(x) — m( S ) (x) is not
small in general. But, since the entropy is a convex function,

From (3.85), (3.86) and item ii) of Lemma 3.1, there is a constant b6>0
such that, for any £ small enough,

(we used that &rc(mTC) = 0).
Next, analogously to what done when proving Proposition 3.3,

we reconstruct the full partition function to bound the other terms in
the r.h.s. of (3.84). First we use the rational symmetry to replace
Z $ - ( G ( * - ( - R - 1 ) ) by Z^-(G(*°( -/?-!1). Then we use item (i) of
Lemma 3.1 with F = V s , c , R ( m f t s f + ) and aA<• eG(^°(/?) n G(*f)( -R- 1) to
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reintroduce the sum over the CT^'S. After some simple estimates we get, for
some constant b7 > 0.

From (3.87) and (3.88), taking first the limit £,-»• +00 and after yj.0,

We are going to prove that the liminf in the r.h.s. of (3.89) is 0, so the
Proposition is proved. For any s e S q - 1 let

Clearly Gs is the set in the r.h.s. of (3.89) and, by symmetry, /*A))(G,) does
not depend on s. Fix n = «(£) unit vectors uniformly distributed on Sq-1

such that the balls Bsi. = {t>e R*: \v — mps,\ <£} are disjoint and disi(m^s,
U Bsi) < C for any s e Sq-1. Then,

With an appropriate rotation of the si's we can find n new vectors s'i such
that, for any s e S q - 1 , dist(m^i, C\iBc, f^Bc^)>c(, for a suitable constant
c>0 depending only on q and B. Since

from (3.91) we get
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Recalling the definition (3.90), from the construction of the vectors si and
s'i , one checks that there is c' >0 such that the set in the r.h.s. of (3.92) is
contained in the union of the events: {3xe [ — R— 1, R): | |mw(x)| — m^|
>c'C} and { 3 x , y e [ - R - 1 , R ) : |m ( d ) (x ) -m ( S ) y) | >c'Q. The latter one
is clearly contained in the bigger one: {Ebce [ —R — 1, R): | m ( S ) ( x ) -
m ( S ) x + 6)| >c'dt^l(2R)}. We can use then the same arguments that lead to
Lemma 3.4 to prove that the infimum of ^[-/j,/?](w(<5*)) over the above
union of events is bounded from below by c(d,dC,jR) for some c(- , - ) > 0
and any 6* e {2~"; ne N}. Then, from Proposition 3.3 (with parameters
(S, £) smaller than the above one's!), we obtain lim inf y log ftp V(GS)
= 0. |

To use the above result to prove (2.33) we need a preliminary lemma.

Lemma 3.6. Let meJt0, so that there exists a map xt->s(x)e
Sq-1 s.t. \\m — mpS\\ < +00 and U(s)<+ao. Then there is N0eM such
that, for any zeZ, |z| > N0, the unit vector

is well defined and

(recall definition (3.24)).

Proof. We first observe that, since | s ( x ) | = 1 and J is positive and
satisfies the normalization condition (2.2),

and the integral in the r.h.s. of (3.95) goes to 0 as |z|-» +00 since
U(s) < + oo. Then s, is well defined for |z| large. Now we bound

The first norm in the r.h.s. of (3.96) goes to 0 as |z|-> +00 since
||m — mps|| < +00, while

goes to 0 as |z| -> + oo because of (3.95). |
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Now we prove (2.33). Let A be an open set in Jt. If Ar\J?° = 0,
(2.33) holds trivially, therefore we assume An,J/°^0. Let meAr\Jf°,
then there is x i-> s(x) <=Sq-1 such that ||m — m f s | | < + oo and U(s) < + oo.
Let p e ( 0 , 1 — m/,), N<N ̂ J, N^N0 and SN, s _ N _ 1 eSq-1 (N0, zz\-*sz as in
Lemma 3.6). We define the set

Clearly |Xp| < + oo and Xp £ Xp, if p < p'. Moreover, recalling the proof of
Lemma 3.2, we can assume s(x) = | m ( x ) | - 1 m ( x ) for any xeXp. Setting
T N = [ _ - N , N ] we define

By the dominated convergence theorem, mp, N converges to m weakly in
L2-loc as pJ,0 and N-* +00. Then, since A is an open set, mfiNeA for
any p sufficiently small and N large enough. Recalling the definitions (3.4)
and (3.5) one gets

Since fp(m), as a function of \m\, is left continuous in |m| = 1, using the
definition of mpjN in TN, one easily checks that the difference &TN(mTN)-
^TN((mp,N)TN} -*0 as plO uniformly in N. On the other hand, using (2.2)
and the support properties of J, after some simple computation one easily
gets,
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The first integral in the last line of (3.99) is bounded by p \ Xp \ -> 0 as p J, 0.
The second one is bounded by \\m-mps\\T'N -»• 0 as N-» +00. The last two
integrals can be estimate in a same way, let us consider the first one. By
adding and subtracting mp<N(x) -m(y) one checks that it is bounded by

that goes to 0 as p[0 and N-* +00 (recall (3.94)). We conclude that for
any s > 0 we can choose pe and Ne such that m , NeeA and

Since mPe, NeeA there are Se< £8 and Re such that Vs, £e, RE(mp , Ne^A.
Since we can always assume R e > N E , by applying Proposition 3.5, for any
6, £ small enough,

Choosing d ^ Se and £<£,, from (3.100) and (3.101) we find

from which (2.33) follows by the arbitrarily of e.

4. TYPICAL BEHAVIOR

In this section we prove Theorems 2.3, 2.4 and 2.5

Proof of Theorem 2.3. Since fift y is shift invariant, recalling the
definitions (2.22) and (3.47), we can bound

Using Proposition 3.3 (with parameters (S, £) much smaller than the above
one's) and Lemma 3.4, there is c>0, depending on 6 and £, such that
ftfr^ls,^ - )=0)<exp[ — c y ~ 1 ] for any y small enough. Therefore (2.24)
follows from (4.1).
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Now we prove (2.25). By standard density arguments it is sufficient to
prove the convergence of the distribution of the spins in a finite interval
A <=. Z that we can assume centered in the origin. By the DLR equations,
the Radon-Nikodym derivative of Hp,y(daA) with respect to the a priori
product measure on ^, is

where hr(i | aAC) = ^JeAC Jy(i —j) Oj. Since A is fixed independent on y and
\ak\ = 1 for any keZ,

so that

where we shorthand h^O |<TJC) = hv(aAc) and < ^ ( - ) is defined in (2.12). By
using the symmetry of the Gibbs measure with respect to global rotations,
(4.3) gives

But from (2.2) and (4.1), for any C>0,

By (4.4), (4.5) and the arbitrarily of £ we finally get

that proves (2.25) since, from the mean field equation (2.18), ftmfs =
t*(mp)s = h*(mps). |
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Proof of the Theorem 2.4. Using the translation invariance of the
system, we have

To estimate this last probability, we can use the estimate (3.66) with
parameters 6" and f" much smaller than the parameters d" and (". Using
the first inequality in (3.81) to bound the infimum of the rate functional,
after some easy estimates we get that, for some constant c > 0,

Note that we have taken the worst term for the estimates of p(S", C"). see
(3.81). The next step is just to make an appropriate choice of all the
parameters. Let us first remark that in order that the last exponential goes
to zero, we need

for some constant c1 >2C/c', and also, to compensate the entropy term,

for some positive constant c2 > c. In the last step we have used that the
minimum of the term in the middle is reached by choosing <5*«
( y 1 / 2 l o g y - 1 / 2 ) . Looking at the second exponential in the formula (4.8), we
want to take the smallest possible <5" + £". Given that (4.10) has to be
satisfied, it is a simple minimization problem with a constraint, the solution
is 5" = c3C" for some positive constant c3 and this implies that we have to
satisfy, for some c4 > 0,

We choose C" = /" with d" <(2(5 + q ) ) - 1 . In which case (4.9) is satisfied
with R" = c1y- ( 5 + q ) d"/c2

3 .
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Now, in order that the first exponential in (4.8) goes to zero, we need
at least for suitable c5, c6 > 0,

Taking d" < 1/2 - (5 + q) d" that is d" < (2(6 + q)) -1 the condition we get is
just

Clearly the Theorem 2.4 follows with any c>c5 + c6. |

Proof of the Theorem 2.5. It is sufficient to prove that

Using the formula (3.66), for some c>0,

The next step is to estimate the previous infimum. Note that we have
^(m(S'}} *f J^ [_L, +L](w (<i* )), moreover

where

Therefore
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Now we have

For any x e [ — L, + L) let n = n(x) e Z be such that np < x < (1 + 1) p,

and

By triangular inequality,

and, by similar arguments as in (3.69), if we denote by

then, for any me$L(0,p)c, we have

from which we get

We insert (4.25) in (4.15) and we find
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It remains to choose the parameters R, 6, £, S* in such a way that the
right hand side of (4.26) goes to zero. Making similar arguments as after
(4.9), one can check that the choice <5 = £ = (2(6+q))-1, JR = c1y- (5 + q)/2(6 +q),
c1 a positive constant, and S* =1/2log y - 1 / 2 implies that, if L < y - ^ with
A<(6(6 + q))-1 then the right hand side of (4.26) goes to zero, and this
ends the proof of the Theorem 2.5. |

5. ESTIMATES FOR THE INDEPENDENT MODEL

In this section we prove Theorem 2.2.
It is possible to compute an explicit expression for the density of vN.

By using the integral representation of the ^-function on Rq we have

We recall now the following integral representation of the Bessel functions
(ref. 36, p. 47). For any peC such that Re(p)> - 1/2,

From the spherical symmetry of the problem, by using polar coordinates
and recalling that |Sq-1| = 2nq/2/r(q/2), it is not difficult to obtain

We point out that PfyN \m\) = N~g(dvN/dm)(m) is the well known for-
mula of the density of the probability distribution for the Pearson's walk
(ref. 36, p. 419). The integral in the r.h.s. of (5.3) is absolutely convergent
for N>2 and identically 0 for \m\ > 1. So the density is well defined for
N>2 and identically 0 for |m| > 1.

Now we prove (2.20). Let re(0, 1) and denote by Br the closed ball
in R* of radius r and center in the origin. Fix meBr and let h* = h*(m) be
as in (2.16). Then
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having introduced the measure

Calling

and using again the integral representation of the ^"-function, we get

so that

Next we will prove the following lemma.

Lemma 5.1. Fix re(0, I) and let <pm(k] be as in (5.6) with meBr.
Then k i—> (pm(k) is a smooth complex function such that:

(i) | q m ( k ) | < p m ( 0 ) = 1 for any k e Rq.
(ii) In a neighbor of the origin we have the expansion

where Q m ( . ) is a quadratic form, uniformly positive for meBr, and (,m(k)
a smooth function satisfying !£„,(&)! <c1(r) |k|3 for some c 1 ( r ) > 0 .

(iii) There are positive constants c2(r) and K(r) such that

(iv) | ( p m ( k ) | reaches its maximum value only for k = 0 which is a
strict maximum for this function.

We fix S e ( 1 / 3 , 1/2) and decompose
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with

We estimate the three terms separately. By changing variables and using
Lemma 5.1, item (ii),

where Cm(k) is a smooth function with the same properties of t,m(k) so that
the rest O ( N - ( 3 S - 1 ) ) is uniformly bounded when meBr. From items (ii),
(iii) and (iv) of Lemma 5.1, there is C 1 ( r ) > 0 such that for any N large
enough |<pm(k)| < 1 - C1(r) N26 when |k| > N - s . Then

so that, for some C2(r) > 0,

Finally, by using item (iv) of Lemma 5.1,
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From (5.8), (5.12), (5.13) and (5.14) the bound (2.20) for some c ( r ) > 0
follows.

We are left with the proof of (2.21). Denoting by P the probability
distribution of a, we have

where Ar is the cylinder set defined by

Consider now the sets

and define the stochastic variable

Clearly, for any a,

so that, for any re(0, 1),

Since f([0, 1 ]) = [ 1/3, 1/2], from (5.17) we conclude that, for any
re(0, 1),

Then we need an estimate of the probability of Gr. For any subset / of
{1,. . . ,N} let

Q(;} = {a: there are |I| indexes je {1,..., N}\ I such that ocQ^]}

We claim that
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In fact, it is possible to extract at least N/6 disjoint pairs (i, j) from a set
of pairs whose cardinality is bigger than N2/3. Now, since the CT'S are i.i.d.,
for any I,

On the other hand, by using polar coordinates,

Collecting together (5.18), (5.19),(5.20), (5.21) and observing that

we finally get

where IBer(.) is the Bernoulli entropy. Clearly (5.22) gives (2.21) for a
suitable choice of b > 0. Theorem 2.2 is proved. |

Proof of Lemma 5.1. Since vm is compactly supported, the smooth-
ness of <pm(k) comes from direct inspection. Now we prove properties
(i)-(iv).

(i) It holds trivially.

(ii) From the definition of h*,

Then, by expanding <pm in k = 0, we get (5.9) with

where n m , k ( v ) is a suitable number in the interval [ 0 > k . ( v - m ) ,
0 v k . ( v - m ) ] . Recalling the definition (5.5) of vm and (2.16) of h* it is
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easy to check that Qm(k) and £ m (k ) have the desired properties stated in
the lemma. We omit the details.

(i i i) We analyze separately the cases q = 2 and q = 3:
(q = 2) Calling a the angle between the vectors k and m and using

polar coordinates, we have, for any |k| >0,

where we used (2.14) and that |h*| = t*, see (2.16) and (2.17). Now we
recall the following integral representation of Bessel functions of integer
order n (ref. 36, p. 19),

which gives the Fourier expansion

so that

Using again (5.26) we get

and so

In ref. 36, p. 205-206 it is proven that, for any x and p positive,
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where

Now

and, for any integer n > 1,

where in the last equality we used the "Legendre's duplication formula"

In ref. 36, p. 49 it is proven also that for any real order p > — 1/2,

We use (5.30), (5.32) and (5.33) to bound \J? n ( |k | ) | and, since Jf_n(z) =
( - 1)n Jn(z) for any integer n, we can use (5.34) to bound |SH( — it*)\ for
any neZ. From (5.29) we get
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Since t* is an increasing function of |m|, by choosing /c(r) > ^/2 t*(r), from
(5.35) we get (5.10) for q = 2 with c2(r) a suitable function of t*(r).

(q = 3) As before, calling a the angle between the vectors k and m, by
introducing polar coordinates and recalling (2.14), we have, for any \k\ > 0,

By Fourier-Legendre expansion of exp[t* cos 0], (5.36) becomes

where Pn(x), x e [ — 1, 1 ], is the Legendre polynomial of order n and

By applying the Gegenbauer's formulae (ref. 36, p. 50, 379),
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and

to (5.38) and (5.37) respectively, we finally obtain the estimate

where we used also that |Pn(x)| < 1 for any xe [ — 1, 1 ] and ne N. Now
we proceed analogously to the case q = 2. We uses (5.34) to bound
|j^ n+ 1/2( —i t* ) | and the integral representation (5.30) to get a bound for
|-^ + 1/2(|k|) | with the gain of a factor | k | - 1 / 2 (observe that, by reasoning as
in (5.33), for any n>0 and x>0, | Q ± ( x , n + 1/2)| <2n/2[1 +F(2n+ 1)/
((2je)T(n + 1))]) . We omit the details.

(iv) From (i) and (ii), k = 0 is a strict absolute maximum. From
(5.25) and (5.36) when q = 2 and q = 3 respectively, |<p m (k) | = |<l>a(|k|)|
where, for any <xe[0, n~], &x(t), t eR , is the characteristic function of a
suitable real random variable £a. By standard results on characteristic
functions (ref. 16, p. 501, Lemma 4), if for some a there is A>0 such that
|(Pa(A)| = 1, then |#„(t)| is a periodic function of period L But this implies

which contradicts property (iii). |
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